
HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI

Open-Source
Morphologies and
Crowd-Sourcing
Lexicography
at FSCONS 2013

Tommi A Pirinen
‹tommi.pirinen@helsinki.fi› /

‹flammie@gentoo.org›

November 13, 2013
Department of Speech Sciences
University of Helsinki

Outline

Part 1: Crowd-Sourcing and Lexical Data Concepts
and Experiences

Introduction: Concepts
Crowd-sourcing: uses and issues

Part 2: Productising Research Results
Introduction
Some examples
Requirements for a Software Product

Myself and relevant projects

Academically: Tommi A Pirinen http:
//www.helsinki.fi/%7etapirine/, see
also Open science / reproducible research at
http://github.com/flammie/
purplemonkeydishwasher

in FLOSS e.g., Flammie
http://dev.gentoo.org/%7eflammie/

Open source morphology for Finnish
http://code.google.com/p/omorfi/,
#omorfi on Freenode
hfst-ospell http://hfst.sf.net/, #hfst
apertium machine translation, simple4all
text-to-speech, localisation etc. . . .

http://www.helsinki.fi/%7etapirine/
http://www.helsinki.fi/%7etapirine/
http://github.com/flammie/purplemonkeydishwasher
http://github.com/flammie/purplemonkeydishwasher
http://dev.gentoo.org/%7eflammie/
http://code.google.com/p/omorfi/
#omorfi
http://hfst.sf.net/
#hfst

Outline

Part 1: Crowd-Sourcing and Lexical Data Concepts
and Experiences

Introduction: Concepts
Crowd-sourcing: uses and issues

Part 2: Productising Research Results
Introduction
Some examples
Requirements for a Software Product

Morphology

originally in linguistics: inflect words
in a broad sense: classifying words, inflectional
suffixes, etc.
E.g., hundarnas = hund + ar + na + s = dog,
common gender, needs ar as plural suffix,
possessive form (the dogs’)
derivation and compounding can create
infinitely many infinitely long words which must
be predicted e.g. paternal grandfathers in
Finnish (isä, isänisä, isänisänisä, isän. . . isä)
Finite-State Morphology I work with, is capable
of much more complex language systems
to reach a system dealing with this we need
data about words, leading to...

Lexicography

“Dictionary writing”, in this context more like
data harvesting
Collect all words
How do they inflect (i.e., which are the valid
forms of the word)
How do they operate with other words in
sentence (syntax)
What do words mean, how do you translate
them (semantics)
Everything else

Example of trad. dictionary

[Oxford English Dictionary, 3rd ed., s.v. set]

One example of Digital
Dictionary
[our Finnish omorfi database s.v. asettaa (set)]
asettaa [’V_VIEROITTAA’] VERB 53 C
False False None False False None
aset asett0aa^backC None weaken back
False False False None False False
False False asettaa

Crowd-sourcing

Getting lots of people to work on same project
Wikipedia is the best success story here
Ideal for lexicography: no special skills needed,
all native speakers know words of their
language
There are projects for dictionary building as
well: Wiktionary, Omegawiki, . . . (not as huge
success stories, yet)

Outline

Part 1: Crowd-Sourcing and Lexical Data Concepts
and Experiences

Introduction: Concepts
Crowd-sourcing: uses and issues

Part 2: Productising Research Results
Introduction
Some examples
Requirements for a Software Product

Uses of Crowd-Sourcing in
Morphology Development

New words come and go all the time:
crowd-sourcing, facebooking, . . . , and we need
all of them ASAP
Collecting new features and information bits for
words never ends
semantics: is it (can it be) human, sentient,
edible, female, location, corporation, mass
nouns
popularity: common word, rare, obscure
style and usage: dialects, curse words,
academic, computer, medicine
. . . approx. each new application for language
model needs new data

Issues in Crowd-Sourcing
Lexicographies

1. Using data (long) after it has been built by
harvesting, scraping, etc. requires lots of work

2. Inputting well-structured data in system not
designed for it is cumber-some and error prone

3. That is, wiktionary is really just an attempt of
using something designed for writing
encyclopedic prose in structured dictionaries

4. Wiktionaries are never stable, trying to use
data from outside the system requires tracking
changes in conventions

5. Newer systems attempted to bridge the gaps
have not been successful either (Omegawiki,
...)

Example of Wiktionary Page

And its Source...

===Verbi===
{{fi-verbi|as|ettaa|muistaa|C}}

[[laittaa]], [[panna]], [[sijoittaa]] paikalleen
#:’’Hän asetti maljakon pöydälle.’’
[[määrätä]], [[määrittää]]
...
====Käännökset====
{{kohta|1|laittaa, panna, sijoittaa paikalleen|

*englanti: [[put]], [[place]], [[set]], move into position, [[locate]]

*hollanti: [[aanbrengen]]

Scraping the Data From
Wiktionary

1. find section for Finnish words
2. find each definition
3. find and translate something like

fi-verbi|as|ettaa|muistaa|C into
asettaa V_MUISTAA VERB 53 C...

e.g., when I last wrote the script for scraping
this data, fi-verbi|as|ettaa|muistaa|C
was fi-verb|53|C

Example 2: Omegawiki

database approach for storing data in well
structured form
getting data would be easier and more
consistent
still quite cumbersome to edit
lacks some central pieces of information for
Finnish and most other langs than English,
e.g., inflection classification

Example of Omegawiki Page

Quality Issues in
Crowd-Sourcing

people know lots of their native languages but
not always enough
some contributors are language learners
vandalism
Two ways currently used to cope with this:
python scripts, regexes etc. to check some
sanity
Automatic tests with the final software and free
texts: do new additions work somewhat like old
words, etc.
In the end it all falls down to expert reviews
again

Conclusions (questions): How to
Proceed?

How to combine popularity of Wiktionary with
forms and structure of Omegawiki?
Improve user interfaces?
Better access to wiki data?
Feedback from databases to Wiktionary?
Answers? Questions?

HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI

Open-Source
Morphologies and
Crowd-Sourcing
Lexicography
at FSCONS 2013

Tommi A Pirinen
‹tommi.pirinen@helsinki.fi› /

‹flammie@gentoo.org›

November 13, 2013
Department of Speech Sciences
University of Helsinki

Myself and relevant projects
(again)

Academically: Tommi A Pirinen http:
//www.helsinki.fi/%7etapirine/, see
also Open science / reproducible research at
http://github.com/flammie/
purplemonkeydishwasher

in FLOSS e.g., Flammie
http://dev.gentoo.org/%7eflammie/

Open source morphology for Finnish
http://code.google.com/p/omorfi/,
#omorfi on Freenode
hfst-ospell http://hfst.sf.net/, #hfst
apertium machine translation, simple4all
text-to-speech, localisation etc. . . .

http://www.helsinki.fi/%7etapirine/
http://www.helsinki.fi/%7etapirine/
http://github.com/flammie/purplemonkeydishwasher
http://github.com/flammie/purplemonkeydishwasher
http://dev.gentoo.org/%7eflammie/
http://code.google.com/p/omorfi/
#omorfi
http://hfst.sf.net/
#hfst

Outline

Part 1: Crowd-Sourcing and Lexical Data Concepts
and Experiences

Introduction: Concepts
Crowd-sourcing: uses and issues

Part 2: Productising Research Results
Introduction
Some examples
Requirements for a Software Product

Case of Creating Spell-Checkers
for Less-Resourced Languages

Research work: Moving from open source
morphologies to efficient finite-state
spell-checkers
Including conversion from existing formats to
something equivalent of finite-state automata
(e.g., from hunspell and its predecessors)
At the moment: Software exists, is usable in
enchant, libreoffice, etc., but not available in
distros

Research Programming in
Slashdot
Larry Page and Sergey Brin are Lousy Coders:
<http://slashdot.org/story/13/11/01/
1324209/
larry-page-and-sergey-brin-are-lousy-coders>
“Google engineering boss Craig Silverstein recalls
in the book. ‘I had to deal with their legacy code
from the Stanford days and it had a lot of problems.
They’re research coders: more interested in writing
code that works than code that’s maintainable.’ ”

http://slashdot.org/story/13/11/01/1324209/larry-page-and-sergey-brin-are-lousy-coders
http://slashdot.org/story/13/11/01/1324209/larry-page-and-sergey-brin-are-lousy-coders
http://slashdot.org/story/13/11/01/1324209/larry-page-and-sergey-brin-are-lousy-coders

Current Research Methodology

1. Research problem (issues in current
spell-checking)

2. Idea for solution (scribbled notes and formulas)
3. Proof-of-concept implementation (hacky code)
4. Experimentation (one-off measurements)
5. Publication
6. ... Research projects, funding etc. end here, all

results get abandoned

Results, data, code, is all published in open
science terms.

Suggested Continuation

1. ... Publication
2. Software Development (from hacky code to

real library)
3. Integration to Real World Software
4. Distribution
5. Maintenance
6. Profit

Outline

Part 1: Crowd-Sourcing and Lexical Data Concepts
and Experiences

Introduction: Concepts
Crowd-sourcing: uses and issues

Part 2: Productising Research Results
Introduction
Some examples
Requirements for a Software Product

Example from Early Part of my
Project
hunspell2fst, would be rather important in business
of replacing hunspell:

1. Transforming existing hunspell dictionaries into
more efficient finite-state spell-checkers

2. Few obscure formulas:
3. Then some flex and yacc code and scripts to

transform hunspell data files in around 10
commands

4. Measured some improvement over hunspell on
most of the languages

5. Published in 2010 in an IEEE journal
6. The collection of scripts used is probably

unusable now

Compare to: End of my Thesis
Project

Full working spell-checking, faster than
hunspell, more efficient in most cases (but
likely less stable)
Integration to common open source software:
LibreOffice, Mozilla, enchant (GTK+) (via
software library voikko)
Standard installation but turned off by default,
requires manual work and not in current
distributions, but packages exist

Outline

Part 1: Crowd-Sourcing and Lexical Data Concepts
and Experiences

Introduction: Concepts
Crowd-sourcing: uses and issues

Part 2: Productising Research Results
Introduction
Some examples
Requirements for a Software Product

Product Requirements Unmet by
Typical Scientific Software

Stability: no error checking, no crash guarding,
... since software is only used in protected env.
by experts without malicious intents
Licencing: Academic licence restrictions are
strictly against GNU definition of Freedom;
smaller discrepancies, e.g., Debian legal does
not allow even GPLv2 and Apache2 on same
software
Standards: GNU standards, not only for
licence but installation procedures, packaging
User interfaces: GNU, Gnome, KDE, ...
integration
Documentation: Academic paper is not code
documentation or so forth

Other Issues

Software maintenance in Linux distributions
requires committed people to work on it (e.g., I
only have access to gentoo’s web since lack of
activity etc.)
Getting access to Linux distribution systems
requires social engineering
for some distros and products external
repositories, overlays, ppa’s, help, but they are
not feasible for the most important target group
of spell-checkers

Social Issues with Linguistics vs.
FLOSS Hackers

Niche products (limited use scientific software,
small languages’ support) may be frowned
upon by software engineers. E.g.:
“Well, that’s a valid enhancement request, of
course, but something must to be done to
prevent filling the text language dropdown with
such rubbish languages, making it hard to
use.” —a maintainer comment to bug report
asking for Kumyk support in LibreOffice
Similar attitude is common for any non-English
related language support request

Windows Support? And other
systems; Android, Mac OS X?

Windows support usually requires commercial
contracts, non-free implementations, NDAs
For spell-checking, Windows 8 (as far as I’ve
heard), Android 4, Mac OS X are gradually
opening the access to spell-checking
components that can be used to replace or
extend system libraries
In general, software product maintenance
could be passed over from scientist to
hobbyists and commercial workers,

Conclusion: Questions?
Answers?

Open science and FLOSS is not enough for all
(any?) academic projects to become products
(in FLOSS envs even)
Scientists are scarce resource for software
development, maintenance, distribution...

Even More Links and References

http://github.com/flammie/
purplemonkeydishwasher/2013fscons/

http://wordpress.let.vupr.nl/
reproducingnlpresearch/

https:
//sourceforge.net/p/hfst/code/
HEAD/tree/trunk/conversion-scripts

https://sourceforge.net/p/hfst/
code/HEAD/tree/trunk/hfst-ospell

http://github.com/flammie/purplemonkeydishwasher/2013fscons/
http://github.com/flammie/purplemonkeydishwasher/2013fscons/
http://wordpress.let.vupr.nl/reproducingnlpresearch/
http://wordpress.let.vupr.nl/reproducingnlpresearch/
https://sourceforge.net/p/hfst/code/HEAD/tree/trunk/conversion-scripts
https://sourceforge.net/p/hfst/code/HEAD/tree/trunk/conversion-scripts
https://sourceforge.net/p/hfst/code/HEAD/tree/trunk/conversion-scripts
https://sourceforge.net/p/hfst/code/HEAD/tree/trunk/hfst-ospell
https://sourceforge.net/p/hfst/code/HEAD/tree/trunk/hfst-ospell

	Part 1: Crowd-Sourcing and Lexical Data Concepts and Experiences
	Introduction: Concepts
	Crowd-sourcing: uses and issues

	Part 2: Productising Research Results
	Introduction
	Some examples
	Requirements for a Software Product

