Logics for Terms of Services and their Usefulness for Automation

Cristian Prisacariu

Precise Modeling and Analysis group (PMA), University of Oslo

> ^{at} FSCONS

10th November 2013, Gothenburg, Sweden.

C. Prisacariu @ UiO

FSCONS 2013

1 / 27

C. Prisacariu @ UiO

Target:

Terms of Services (ToS)

FSCONS 2013 2 / 27

э

글 > : < 글 >

ΠĒ.

Target:

Terms of Services (ToS)

Why?

Empowering people

C. Prisacariu @ UiO

э

글 > : < 글 >

< 🗗 🕨

ΠĒ.

Target:

Terms of Services (ToS)

Why?

Empowering people

How?

Let the browser check the ToS

- < ∃ →

٦Ē

LoToS – Logics for Terms of Service The project

LoToS – Logics for Terms of Service

The project

Automation for Terms of Services

- Automate the reading.
- Automated analysis (personalized).
- Automated translation.
- Automated negotiation.
- Drafting.
- Visualization.
- Summaries.
- Comparisons.

LoToS – Logics for Terms of Service

The project

Include:

- Natural Language Processing (NPL).
- Knowledge representation (KR).
- Understanding norms and actions.
- Inference engine.
- Verification of desired properties/requirements.
- Monitor.
- Open system administered by a community.
- User friendly and ease of use.

User's point of view

User's point of view

A new ToS text is read into a logical model for LoToS.

User's point of view

- A new ToS text is read into a logical model for LoToS.
- Over's expectations/requirements/properties/rules are checked by the LoToS model checker against the new ToS.

User's point of view

- A new ToS text is read into a logical model for LoToS.
- Over's expectations/requirements/properties/rules are checked by the LoToS model checker against the new ToS.
- If the check goes through, then the ToS respects the user's requirements (privacy, economical, etc.)

User's point of view

- A new ToS text is read into a logical model for LoToS.
- Over's expectations/requirements/properties/rules are checked by the LoToS model checker against the new ToS.
- If the check goes through, then the ToS respects the user's requirements (privacy, economical, etc.)

No user input was needed up to now.

User's point of view

- A new ToS text is read into a logical model for LoToS.
- Over's expectations/requirements/properties/rules are checked by the LoToS model checker against the new ToS.
- If the check goes through, then the ToS respects the user's requirements (privacy, economical, etc.)

No user input was needed up to now.

- **9** If some requirement fails, the user is provided with an explanation.
- Solution Visualization and summary of the explanation/trace is needed.

The user takes the ultimate decision to accept the ToS.

User's point of view

ToS text

æ

E > < E >

< A > <

ריים.

User's point of view

User's point of view

C. Prisacariu @ UiO

æ

・ 何 ト ・ ヨ ト ・ ヨ ト

TIE.

User's point of view

Logics and Tools for Terms of Services

FSCONS 2013 6 / 27

æ

(日) (同) (三) (三)

ריים.

User's point of view

æ

(日) (同) (三) (三)

ריים.

User's point of view

trace

C. Prisacariu @ UiO

Logics and Tools for Terms of Services

FSCONS 2013 6 / 27

æ

・ 伺 ト ・ ヨ ト ・ ヨ ト

ΤIFI.

User's point of view

C. Prisacariu @ UiO

Logics and Tools for Terms of Services

FSCONS 2013 6 / 27

э

・ 伺 ト ・ ヨ ト ・ ヨ ト

ריים.

User's point of view What can go wrong

C. Prisacariu @ UiO

Logics and Tools for Terms of Services

What can go wrong

What can go wrong

- When reading the ToS text
 - a passage cannot be parsed, or is ambiguous for CNL parser

What can go wrong

- When reading the ToS text a passage cannot be parsed, or is ambiguous for CNL parser
 - User is notified for
 - help with the parsing rules
 - disambiguation
 - or to ignore that part of the $\ensuremath{\mathsf{ToS}}$

What can go wrong

- When reading the ToS text a passage cannot be parsed, or is ambiguous for CNL parser
 - User is notified for
 - help with the parsing rules
 - disambiguation
 - or to ignore that part of the ToS
 - A non-expert user may access the on-line LoToS system
 - where the present ToS hopefully/probably exists
 - expert users from the community took care to disambiguate
 - any choices for a ToS can be visualized by the user

What can go wrong -2

Requirements are difficult to define.

What can go wrong – 2

- Requirements are difficult to define.
 - templates predefined by the community experts can be taken a priori and filled in for the present ToS
 - for ToS existing in the on-line LoToS predefined requirements can readily be taken
 - The user administers a personal wallet for requirements. (Care needs to be taken by the community for the available

requirements, so to avoid clutter.)

What can go wrong -3

Requirements who checks them?

C. Prisacariu @ UiO

Logics and Tools for Terms of Services

User's point of view What can go wrong - 3

- Requirements who checks them?
 - model-checking can be computational intensive.
 - for existing ToS any requirements in the on-line LoToS should have already been checked

User's point of view What can go wrong - 3

- Requirements who checks them?
 - model-checking can be computational intensive.
 - for existing ToS any requirements in the on-line LoToS should have already been checked
 - Any new requirements are a model-checking problem
 - that can be solved on the user's machine
 - or through the community's distributed model-checking system

```
User's point of view
What can go wrong - 4
```

With quantities, deadlines, and other quantifiable notions like privacy, satisfying requirements can be fuzzy, i.e., on a scale range.


```
User's point of view
What can go wrong - 4
```

With quantities, deadlines, and other quantifiable notions like privacy, satisfying requirements can be fuzzy, i.e., on a scale range.

- Thresholds can be used to determine when to signal failure.
- Otherwise, the verification can return a quantitative evaluation. The user decides if the requirements evaluated against the ToS have a reasonable outcome to allow acceptance.
 - Explanations are more difficult.
 - Visualization could help (LoToS needs information designers).

User's point of view help from on-line LoToS

C. Prisacariu @ UiO

Logics and Tools for Terms of Services

FSCONS 2013 11 / 27

æ

(日) (同) (三) (三)

ΤIFI.

User's point of view help from on-line LoToS

User's point of view help from on-line LoToS

User's point of view help from on-line LoToS

User's point of view help from on-line LoToS

User's point of view help from on-line LoToS

 Controlled Natural Language (CNL) – based on first-order logic (FOL) for reading

- Controlled Natural Language (CNL) based on first-order logic (FOL) for reading
- Grammatical Framework (GF) a functional language for translations

12 / 27

- Controlled Natural Language (CNL) based on first-order logic (FOL) for reading
- Grammatical Framework (GF) a functional language for translations
- Knowledge Representation (KR), legal ontology fragments of FOL for capturing the right legal terminology

- Controlled Natural Language (CNL) based on first-order logic (FOL) for reading
- Grammatical Framework (GF) a functional language for translations
- Knowledge Representation (KR), legal ontology fragments of FOL for capturing the right legal terminology
- Deontic logics (DL) and Logics of actions (PDL) for understanding norms and actions

- Controlled Natural Language (CNL) based on first-order logic (FOL) for reading
- Grammatical Framework (GF) a functional language for translations
- Knowledge Representation (KR), legal ontology fragments of FOL for capturing the right legal terminology
- Deontic logics (DL) and Logics of actions (PDL) for understanding norms and actions
- Rule-based reasoning, model-checking, temporal logics (TL) for verification of requirements

Technologies and Logics behind LoToS

- Controlled Natural Language (CNL) based on first-order logic (FOL) for reading
- Grammatical Framework (GF) a functional language for translations
- Knowledge Representation (KR), legal ontology fragments of FOL for capturing the right legal terminology
- Deontic logics (DL) and Logics of actions (PDL) for understanding norms and actions
- Rule-based reasoning, model-checking, temporal logics (TL) for verification of requirements
- Weighted logics, real-time logics, multi-valued/fuzzy logics for non-Boolean notions like deadlines, quantities

C. Prisacariu @ UiO

Logics and Tools for Terms of Services

FSCONS 2013 13 / 27

э

- 4 回 ト - 4 回 ト - 4 回 ト

C. Prisacariu @ UiO

Logics and Tools for Terms of Services

FSCONS 2013 13 / 27

< 🗇 🕨

э

C. Prisacariu @ UiO

Logics and Tools for Terms of Services

FSCONS 2013 13 / 27

・ 同 ト ・ ヨ ト ・ ヨ ト

э

FSCONS 2013 13 / 27

э

・ 伺 ト ・ ヨ ト ・ ヨ ト

ΤIFI.

э

・ 伺 ト ・ ヨ ト ・ ヨ ト

э

・ 伺 ト ・ ヨ ト ・ ヨ ト

TIFI.

FSCONS 2013 13 / 27

э

・ 伺 ト ・ ヨ ト ・ ヨ ト

TIFI.

using Controlled Natural Languages.

using Controlled Natural Languages.

Attempto/ACE from Zurich University http://attempto.ifi.uzh.ch

-47 ▶

ГП

using Controlled Natural Languages.

Attempto/ACE from Zurich University http://attempto.ifi.uzh.ch

based on Discourse Representation Theory

[Book of H.Kamp&U.Reyle]

using Controlled Natural Languages.

Attempto/ACE from Zurich University http://attempto.ifi.uzh.ch

based on Discourse Representation Theory [Book of H.Kamp&U.Reyle]

Mature, quite expressive, and with a wealth of tools around.
 Attempto Controlled English is a restricted natural language.
 Not clear if ToS language fits ACE restrictions.
 Work exists, e.g. from Stefan Höfler.

Automate the Reading using Controlled Natural Languages (DRT/ACE)

Are using the expressiveness of First Order Logic (FOL).

- FOL is well studied and with a wealth of tools.
- Rule-based reasoning is related to FOL as Horn clauses.

Controlled languages are well known in areas like engineering. (See IBM specifications.)

May be difficult to impose in Law.

- How to transition smooth from ToS texts to controlled Law language?
- How to combine CNL with Knowledge Representation?
- How to allow/handle ambiguities?

Automated Translation

C. Prisacariu @ UiO

Logics and Tools for Terms of Services

Automated Translation

Grammatical Framework (GF) from Chalmers University http://www.grammaticalframework.org/

-47 ▶

ГП

Automated Translation

Grammatical Framework (GF) from Chalmers University http://www.grammaticalframework.org/

based on Martin-Löf's intuitionistic type theory

- Mature and with growing community.
- Connection with Attempto controlled English.
- Functional style language.

Knowledge Representation

for Law

To capture relationships between the meaning of legal definitions and actions.

Knowledge Representation

for Law

To capture relationships between the meaning of legal definitions and actions.

- An ontology for the legal domain.
- Good experience exists in e.g., ontologies for medicine or biology
- OWL is a widespread language for building ontologies.

Knowledge Representation

for Law

To capture relationships between the meaning of legal definitions and actions.

- An ontology for the legal domain.
- Good experience exists in e.g., ontologies for medicine or biology
- OWL is a widespread language for building ontologies.

For the legal domain we may look at:

- The ESTRELLA project and the LKIF language
- CEN MetaLex open XML format for interchange of legal and legislative documents.
- Monitor the works of The Leibniz Center for Law in Amsterdam or the blog VOXPOPULII from Cornell University

Knowledge Representation – Ontologies

Ontologies are built using **Description Logics**

- Many variants of Description Logics exist
 - depending on expressive power
 - depending on computational complexity
- DL Lite has good computational complexity, used in medicine
- OWL is well adopted for semantic web, because of good expressiveness
- See Oxford group of Ian Horrocks
- The Description Logic Handbook

Standard notions like:

Rights/Permissions, Obligations, Prohibitions/Forbidden

Standard notions like:

Rights/Permissions, Obligations, Prohibitions/Forbidden

- In natural language:
 - "may", "can", "permitted", "has the right"
 - "must", "should", "is obliged", "is expected"
 - "not allowed", "must not"

Standard notions like:

Rights/Permissions, Obligations, Prohibitions/Forbidden

- In natural language:
 - "may", "can", "permitted", "has the right"
 - "must", "should", "is obliged", "is expected"
 - "not allowed", "must not"
- See DeonticLogic.org
- The Handbook of Deontic Logic and Normative Systems
- or the DEON conferences

Standard notions like:

Rights/Permissions, Obligations, Prohibitions/Forbidden

- In natural language:
 - "may", "can", "permitted", "has the right"
 - "must", "should", "is obliged", "is expected"
 - "not allowed", "must not"
- See DeonticLogic.org
- The Handbook of Deontic Logic and Normative Systems
- or the DEON conferences

More notions like:

Powers, Governing policies, Exceptions, Parties/Roles, Delegation

- of importance to ToS
- but no satisfactory theories exist yet.

FSCONS 2013

19 / 27

Normative notions and Actions

Actions abound in legal contracts (and in ToS)

Logics and Tools for Terms of Services

< 17 ▶

١Ħ

Normative notions and Actions

Actions abound in legal contracts (and in ToS)

- Deontic modalities applied over actions;
 "Obligatory to pay rent", "Forbidden to download more than 5Mb"
- Actions may have complex structure, durations, quantities, or roles.

20 / 27

Normative notions and Actions

Actions abound in legal contracts (and in ToS)

- Deontic modalities applied over actions;
 "Obligatory to pay rent", "Forbidden to download more than 5Mb"
- Actions may have complex structure, durations, quantities, or roles.

Computer science studies many formalisms for actions:

- Propositional Dynamic Logic (PDL) used for regular expressions. [PDL Book by Harel&Kosen&Tiurin]
- Dynamic Deontic Logic describes deontic modalities over actions in the style of PDL. (see [J.-J. Ch. Meyer], [K. Segerberg])
- Process algebras are describing complex structured actions (see mCRL2 and tool set)

Normative notions and Temporal order

Temporal Logics reason about properties that change over time.

- Time is a linear order, and properties hold at time points
- Temporal operators capture notions like:
 - Property holds always in the future (or past)
 - or at some eventual future point
 - Prop₁ holds at all points until Prop₂ becomes true
Normative notions and Temporal order

Temporal Logics reason about properties that change over time.

- Time is a linear order, and properties hold at time points
- Temporal operators capture notions like:
 - Property holds always in the future (or past)
 - or at some eventual future point
 - Prop₁ holds at all points until Prop₂ becomes true
- Combinations of temporal operators with deontic logics and logics of actions have been investigated.
- Model checking is a technique well studied for temporal logics to check if a model satisfies a logic formula/property.

- Requirements are defined as a formula in an appropriate logic, depending on what the requirement is about.
- The ToS has been read into a model for this logic.

- Requirements are defined as a formula in an appropriate logic, depending on what the requirement is about.
- The ToS has been read into a model for this logic.

Model checking is the technique that checks a logical formula

against a logical model.

- Model checking is automatic.
- Answers YES/NO (counter-example), in a Boolean setting or gives probabilistic answers

- Requirements are defined as a formula in an appropriate logic, depending on what the requirement is about.
- The ToS has been read into a model for this logic.

Model checking is the technique that checks a logical formula against a logical model.

- Model checking is automatic.
- Answers YES/NO (counter-example), in a Boolean setting or gives probabilistic answers
- Is computationally intensive (depending on the dimension of the model)

C. Prisacariu @ UiO

Logics and Tools for Terms of Services

Negotiation can only happen before a ToS is accepted

Negotiation can only happen before a ToS is accepted and only when the ToS fails to satisfy some of the user requirements

Negotiation can only happen before a ToS is accepted and only when the ToS fails to satisfy some of the user requirements

- Use the explanation/counter-example/error-trace to change the ToS
- Send the satisfactory ToS back to the other party (service provider)
- Each party does the same verification-change-send until satisfied

Negotiation can only happen before a ToS is accepted and only when the ToS fails to satisfy some of the user requirements

- Use the explanation/counter-example/error-trace to change the ToS
- Send the satisfactory ToS back to the other party (service provider)
- Each party does the same verification-change-send until satisfied

Problems?

• An automated negotiation could loop forever.

Negotiation can only happen before a ToS is accepted and only when the ToS fails to satisfy some of the user requirements

- Use the explanation/counter-example/error-trace to change the ToS
- Send the satisfactory ToS back to the other party (service provider)
- Each party does the same verification-change-send until satisfied

Problems?

- An automated negotiation could loop forever.
 - A measure of redundancy (minimal change) must exist.
 - User intervention can stop the negotiation.

Negotiation can only happen before a ToS is accepted and only when the ToS fails to satisfy some of the user requirements

- Use the explanation/counter-example/error-trace to change the ToS
- Send the satisfactory ToS back to the other party (service provider)
- Each party does the same verification-change-send until satisfied

Problems?

- An automated negotiation could loop forever.
 - A measure of redundancy (minimal change) must exist.
 - User intervention can stop the negotiation.
- Simple negotiation parameters can effectively terminate; e.g.: involving quantifiable parameters s.a. deadlines or amounts, even requirements expressed as logical formulas
- How about privacy requirements?!

Negotiation where does it fit in LoToS ?

C. Prisacariu @ UiO

Logics and Tools for Terms of Services

FSCONS 2013 24 / 27

æ

(日) (同) (三) (三)

Щ.

Negotiation

where does it fit in LoToS ?

C. Prisacariu @ UiO Logics and Too

Logics and Tools for Terms of Services

FSCONS 2013 24

æ

(日) (同) (三) (三)

24 / 27

ЩΘ.

Negotiation

where does it fit in LoToS ?

C. Prisacariu @ UiO Logics and Tools fo

Logics and Tools for Terms of Services

FSCONS 2013 24 / 27

æ

(日) (同) (三) (三)

Щ.

Monitoring

based on Verification

Monitoring can only be done after the ToS is accepted.

Monitoring

based on Verification

Monitoring can only be done after the ToS is accepted.

Uses:

- Describe sequence of actions and see if they conform with the ToS
- Quantitative evaluation of gains/losses of a sequence of actions wrt. the ToS even if not fully conformant
- Adapt technology from software monitoring

Monitoring

based on Verification

Monitoring can only be done after the ToS is accepted.

Uses:

- Describe sequence of actions and see if they conform with the ToS
- Quantitative evaluation of gains/losses of a sequence of actions wrt. the ToS even if not fully conformant
- Adapt technology from software monitoring

For non-expert users:

- For the existing ToS in the on-line LoToS, predefined (non)acceptable sequence of actions can be searched
- or Templates of sequences of actions (also for parametric actions) visualization

diagrammatic

FSCONS 2013 26

æ

(日) (同) (三) (三)

26 / 27

Щ.

diagrammatic

Logics and Tools for Terms of Services

FSCONS 2013 26 / 27

æ

(日) (同) (三) (三)

Щ.

diagrammatic

diagrammatic

Plan for the Workshop

- Discussions and comments pro/contra
- Answers and Proposals of solutions
- Testing/interacting with existing tools for the presented technologies.
- Share your related work. How/Where would you apply LoToS?
- What do you expect from LoToS? More questions from me ...

Plan for the Workshop

- Discussions and comments pro/contra
- Answers and Proposals of solutions
- Testing/interacting with existing tools for the presented technologies.
- Share your related work. How/Where would you apply LoToS?
- What do you expect from LoToS? More questions from me ...

Thank you for the attention! Welcome after the break.